SWRA technical modellers sessions

Nested simulation

NILE-SEC, Strategic Water Resources Analysis

06-April-2022

What is nested simulation?

Running a model within a model

(implemented in Talsim-NG)

(implemented in Talsim-NG)

5

Root depth

Fully embedded sub-model

(implemented in Talsim-NG)

(implemented in Talsim-NG)

Flow components between cells can be interconnected. If soil downstream is saturated, flow from the upstream cell is impeded

- \rightarrow Backwater effects
- \rightarrow Surface flow accumulates from cell to cell

Application within the SWRA

Modelling of wetlands as sub-models

Response Rule Matrix		Inundation Duration (% Year)																				
Depth (max flood)			<=5	<=10	<=15	<=20	<=25	<=30	<=35	<=40	<=45	<=50	<=55	<=60	<=65	<=70	<=75	<=80	<=85	<=90	<=95	<=100
		0	TR	TR	TR	TR	TR	TR	TR	TR	TR	TR	GR	RE	PA							
	Open Water	0.25	TR	TR	TR	TR	TR	TR	TR	TR	TR	TR	GR	RE	RE	PA						
	Aquatic	0.5	TR	TR	GR	RE	RE	RE	PA													
	Veg	0.75	TR	GR	RE	RE	PA	PA	PA													
	Fringe	1	TR	GR	GR	GR	GR	RE	PA	PA	PA	PA	FR	FR								
		1.25	GR	GR	GR	GR	GR	RE	PA	FR	FR	AQ										
	Papyrus	1.5	GR	GR	GR	RE	RE	PA	FR	FR	FR	FR	AQ	OW								
	Reeds	1.75	GR	GR	GR	PA	FR	FR	FR	FR	FR	AQ	AQ	OW	OW							
	Grace	2	GR	RE	RE	PA	PA	PA	FR	FR	FR	FR	FR	FR	AQ	AQ	AQ	AQ	AQ	OW	OW	OW
	Floodpl	2.25	GR	RE	RE	PA	PA	FR	FR	FR	FR	AQ	AQ	AQ	OW							
	Trees	2.5	RE	RE	PA	PA	FR	FR	OW													
	Shrubs	2.75	RE	PA	PA	PA	OW															
		3	RE	PA	PA	PA	OW															
Days		18	37	55	73	91	110	128	146	164	183	201	219	237	256	274	292	310	329	347	365	

e	Depth_merged	
	dry	Soil moisture close to WP
	shortage	ETa < Etc (stress for the plants)
	wet	ETa = Etc (no stress for the plants
	saturated	100% water logged
	>0 - 15cm	
	>15 - 50cm	
	>50 -100cm	
	>100cm	

Batch model run

configured to: convert flow from Model A as inflow to model B flow from Model B as inflow for model C

Model A: hydrological model producing the inflow for a hydraulic model

> Model B: hydraulic model calculation

Model C: Hydrological model uses outflow of hydraulic model

No real interaction between the models!

Open MI

- A model must provide a standardized interface
- A master model calls the sub-models as Dynamic Link Libraries
- The interface must provide parameters for time, states, etc.

The OpenMI provides a *standardized interface* to define, describe and transfer data on a time basis between software components that run simultaneously.

Feedback between the modelled processes is possible necessary in order to achieve physically sound results.

The OpenMI is designed to accommodate the easy migration of existing modelling systems, since their re-implementation may not be economically feasible

Performance is an issue!