Unterteilung in Systemelemente/en: Unterschied zwischen den Versionen

Aus TALSIM Docs
(Die Seite wurde neu angelegt: „The next step is to decide which system elements are to be used to map the catchment areas, depending on the problem and the data basis. Besides the system ele…“)
(Die Seite wurde neu angelegt: „Once the system elements are defined, the flow network is created, i.e. the flow relationships between the elements are defi…“)
Zeile 45: Zeile 45:
The next step is to decide which system elements are to be used to map the catchment areas, depending on the problem and the data basis. Besides the system element [[Special:MyLanguage/Einzugsgebiet|Catchment Area]], which brings the load into the system via a precipitation-runoff simulation, [[Special:MyLanguage/Einleitung|point source]] can feed the runoff at the exit of the catchment area directly into the system via a runoff hydrograph. The latter is of course only possible if such a discharge hydrograph is available. Then it is the less computationally intensive variant, which in addition (with good quality of the input data) can illustrate most exactly the actually taken place discharge behavior. If, however, for example, a forecast is to be calculated under changed land use conditions or if the discharge hydrograph is not long enough, it is advisable to use the system element [[Special:MyLanguage/Einzugsgebiet|catchment area]]. In Talsim-NG the selection of the system element for subcatchments can also vary from subcatchment to subcatchment.
The next step is to decide which system elements are to be used to map the catchment areas, depending on the problem and the data basis. Besides the system element [[Special:MyLanguage/Einzugsgebiet|Catchment Area]], which brings the load into the system via a precipitation-runoff simulation, [[Special:MyLanguage/Einleitung|point source]] can feed the runoff at the exit of the catchment area directly into the system via a runoff hydrograph. The latter is of course only possible if such a discharge hydrograph is available. Then it is the less computationally intensive variant, which in addition (with good quality of the input data) can illustrate most exactly the actually taken place discharge behavior. If, however, for example, a forecast is to be calculated under changed land use conditions or if the discharge hydrograph is not long enough, it is advisable to use the system element [[Special:MyLanguage/Einzugsgebiet|catchment area]]. In Talsim-NG the selection of the system element for subcatchments can also vary from subcatchment to subcatchment.


Sind die Systemelemente festgelegt, wird die [[Special:MyLanguage/Systemlogik|Systemlogik]] erstellt, d.h. die Fließbeziehungen zwischen den Elementen werden festgelegt.
Once the system elements are defined, the [[Special:MyLanguage/Systemlogik|flow network]] is created, i.e. the flow relationships between the elements are defined.





Version vom 15. Oktober 2020, 13:57 Uhr

Sprachen:

Decisive for how a water management system is divided into individual system elements is the question to be answered with the model and the existing data basis.

Basically there are two possibilities for the subdivision of the area. This can be either catchment area-based or grid-based. In addition, all hydrological structures relevant to the problem must be identified and represented by a suitable system element, e.g. dams by reservoir, withdrawals by consumer, etc. Often there are several conceivable solutions.

The prework for subdividing a river basin is usually done with a GIS.


Catchment area based subdivision

Criteria for the subdivision can be:

  • Area properties (topography)
  • Punctual changes of the outflow by
    • Inflows
    • Point sources
    • Withdrawals
  • Location of hydrological structures
  • Gauge stationing
  • Type and geometry of watercourse

The result of this subdivision are digital catchment area boundaries and river sections. If the available data initially results in a rough subdivision, it can be subdivided even further, especially if, due to the problem at hand, it is important to depict certain processes in the water body that can no longer be represented with the rough subdivision. In the following a high resolution water management system is compared to a low resolution system:

400px 400px
  • As the accuracy of system mapping increases, the importance of hydraulics in waterbodies increases.
  • The parameters of the discharge concentration refer only to the surface discharge in the subarea, or interflow and base discharge.
  • The illustration of the wave runoff in the water bodies is possible.
  • Simple approaches to the calculation of the runoff formation usually get along better with a rough system illustration.
  • Both the surface runoff in the subareas and the wave runoff that occurs in the water bodies are included in the parameters of the runoff concentration.
  • The illustration of the wave runoff in the waters is hardly possible

[[Special:MyLanguage/Datei:Teilgebiet_Auswahl_Systemelemente.png|thumb| Subareas can be defined via a Rainfall-Runoff Model20px or by a signal present at the output. Hydrograph20px to be considered]]


The next step is to decide which system elements are to be used to map the catchment areas, depending on the problem and the data basis. Besides the system element Catchment Area, which brings the load into the system via a precipitation-runoff simulation, point source can feed the runoff at the exit of the catchment area directly into the system via a runoff hydrograph. The latter is of course only possible if such a discharge hydrograph is available. Then it is the less computationally intensive variant, which in addition (with good quality of the input data) can illustrate most exactly the actually taken place discharge behavior. If, however, for example, a forecast is to be calculated under changed land use conditions or if the discharge hydrograph is not long enough, it is advisable to use the system element catchment area. In Talsim-NG the selection of the system element for subcatchments can also vary from subcatchment to subcatchment.

Once the system elements are defined, the flow network is created, i.e. the flow relationships between the elements are defined.


Rasterbasierte Unterteilung

Bei der rasterbasierten Unterteilung wird Wasser von einer Zelle im Allgemeinen entsprechend ihrer Fließrichtung in die nächste Zelle weitergegeben.

Die Übergabe von einer Zelle in die nächste ist je nach Abflusskomponente unterschiedlich:

  • Oberflächenabfluss wird in den Abflussbildungsprozess der nächsten Zelle integriert, d.h. wird dort wie zusätzlicher Niederschlag behandelt.
  • Interflow wird in die Speicherkaskade des Interflows der nächsten Zelle eingespeist
  • Basisabfluss wird in die Speicherkaskade des Basisabflusses der nächsten Zelle eingespeist