Betriebsregeltypen/en: Unterschied zwischen den Versionen

Aus TALSIM Docs
(Die Seite wurde neu angelegt: „:All reservoirs with a direct influence on the control point receive a missing quantity/factor and a content-dependent scalable function according to :Datei:…“)
Keine Bearbeitungszusammenfassung
 
(257 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
{{Navigation|vorher=|hoch=Betriebsregelkonzept|nachher=Abstraktion der Betriebsregeln}}
{{Navigation|vorher=|hoch=Betriebsregelkonzept|nachher=Abstraktion der Betriebsregeln}}


The operating plan of a dam or a storage network system is usually available in the form of a text or graphic copy and is often part of the planning approval of the entire facility. The complexity of an operating plan can vary greatly. It ranges from a simple definition of flood protection areas and the additional preparation of a reporting and alarm plan to notify the supervisory authorities in exceptional situations, to complex sets of rules in the form of functional dependencies that derive the charges from different system states.
The operating plan of a dam or a storage network is part of the official approval of plans and usually is available as a report or presentation. Its complexity can vary: it ranges from simply defining flood protection areas and setting a report and alarm plan to notify the supervisory authorities in exceptional situations to complex sets of rules concerning functional dependencies that derive discharges from varying system states.


Following, examples that clarify the variety of possible regulations and the reduction to the essential dependencies are presented. From these examples a concept is derived on how the majority of operating rules can be represented by a few basic calculation rules. The given selection does not claim to be complete, but it is likely to contain the majority of the rules applied in practice.
As follows, principles to clarify the variety of possible regulations and reduce them to essential dependencies are presented. A concept is derived to represent most operating rules by a few basic calculation rules. The given selection does not claim to be complete, but it is likely to contain the rules applied in practice.




==Principle: Verification of physical limits==
==Basic Principle: Verification of Physical Limits==


[[Datei:Theorie_Abb1.png|thumb|Figure 1: Dependence on storage capacity]]
[[Datei:Theorie_Abb1.png|thumb|Figure 1: Dependency on storage capacity]]


When specifying releases according to an operating rule, it is assumed that the capacity of the outlets is sufficiently large to meet these releases. Thus, the dimensioning of the outlet element must take into account the requirements of the water management operation. Usually there will be no problems in this respect. In principle, however, the physically feasible discharge, given by the characteristic curve of the outlets at full opening, is fixed as the upper limit value.
When specifying discharges according to an operating rule, it is assumed that the outlet capacity is sufficient to meet these discharges. Thus, dimensioning the outlet element must consider the operating requirements. In principle, the physically possible discharge, given by the outlet's characteristic curve at full opening, sets the upper limit value.


If the pressure level or the capacity of the outlet at full opening is sufficient to discharge the desired quantity, the discharge can be throttled to the intended level by closing a slide. If the pressure height is not sufficient, only the hydraulically possible discharge can be achieved.
If the pressure level or the outlet capacity is sufficient to discharge the desired quantity when fully opened, the discharge can be throttled to the intended level by closing a slide. If the pressure level is insufficient, only the hydraulically possible discharge can be discharged.


*Mathematical abstraction:
*Mathematical abstraction:
:All outlets according to an operating rule are functions of the reservoirs content and cannot exceed the maximum capacity of the outlets when fully open. As soon as the capacity of the outlets exceeds the required delivery quantity, it can be adjusted by partial closing of the control elements.
:All outlets obeying an operating rule are functions of the storage's volume and cannot exceed the outlets' maximum capacity when fully opened. As soon as the capacity of the outlets exceeds the required discharge, it can be adjusted by partially closing the control elements.


All forms of releases from storage facilities mentioned below are subject to this restriction.
All discharge types from storages mentioned below are subject to this restriction.




==Rule type 1: Definition of a minimum output or a maximum output that can be discharged without damage in the underflow.==
==Rule Type 1: Definition of a Minimum Output or a Safely Dischargeable Maximum Output==


[[Datei:Theorie_Abb2.png|thumb|Figure 2: Example for minimum and maximum discharge as a function of storage capacity]]
[[Datei:Theorie_Abb2.png|thumb|Figure 2: Example for minimum and maximum discharge as a function of storage capacity]]


* Dependence:
* Dependency:
:The specification of a minimum or maximum charge is based on requirements in the underflow of a reservoir. The maximum discharge is often based on the discharge of a critical, lower lying water cross section. Consequently, a clear hydraulic method exists for its determination. In contrast, there is no clear guideline for the minimum discharge. Often certain ratios of MNQ or MQ are used. Independent of the determination of the minimum or maximum discharge. However, the dependence on the capacity of the discharge elements, described above as a principle, is applied. Minimum and maximum discharge can only be discharged if the capacity of the outlets is sufficient at the given pressure head. Since it is unlikely to happen in practice that the dimensioning of the outlet elements and the required discharge are contradictory, the reference to the dependence on the storage capacity content is rather theoretical, but necessary for the derivation of general laws.
:The specification of a minimum or maximum discharge is based on requirements downstream of a storage. The maximal discharge is based on the discharge respective to a critical, downstream cross-section. Consequently, a hydraulic method exists for its determination. In contrast, there is no clear guideline for the minimum discharge. Often, ratios of MNQ or MQ are used. Independent of determining the minimum or maximum discharge, the basic principle to verify outlet elements' physical limits is applied. So, minimum and maximum discharge can only be discharged if the outlet capacity is sufficient at the given pressure level. Since, in reality, it is unlikely that the dimensioning of the outlet elements and the required discharge are conflicting, the reference to the dependence on the storage capacity content is rather theoretical but necessary to derive general laws.


* Mathematical abstraction:
* Mathematical abstraction:
:Minimum and maximum discharge are functions of the reservoirs contents and follow the characteristic curve of fully opened outlets at very low filling. As soon as the capacity of the outlet organs is sufficient for the required delivery quantity, the delivery can be kept constant by partial closing of the control elements.
:Minimum and maximum discharge are functions of the storage volume and follow the characteristic curve of fully opened outlets at a low filling level. As soon as the outlet elements' capacity is sufficient for the required discharge volume, the discharge can be kept constant by partially closing the control elements.




==Rule type 2: Maintaining a flood protection area, perhaps variable in time over the year==
==Rule Type 2: Maintaining a Flood Protection Area, Possibly Timely Variable Over the Year==


[[Datei:Theorie_Abb3.png|thumb|Figure 3: Example of a function for maintaining a flood protection area]]
[[Datei:Theorie_Abb3.png|thumb|Figure 3: Example of a function to maintain a flood protection area]]


* Dependence:
* Dependency:
The definition of a flood protection area includes as a minimum requirement only the naming of a volume, which has to be kept free for the storage of flood water. The dimensioning is done based on flood fills with certain recurrence intervals. If the water level exceeds the mark of the protection area, an increased discharge to the lower course of the reservoir ensures that the area is kept free. Thus, this regulation is reduced to a relation between discharge and reservoir content, whereby the outlet capacity or a defined maximum discharge can serve as an upper limit for keeping it free. If the flood protection area is variable in time over the year, only the reservoir content changes from which the discharge is increased.
:The definition of a flood protection area as a minimum requirement only includes the designation of a volume, which has to be kept free for potential floodwater. The dimensioning is based on flood events with certain recurrence intervals. If the water level exceeds the mark of the protection area, an increased discharge to the downstream water of the storage ensures that the area is kept empty. Thus, this rule is reduced to a relation between discharge and storage volume, where the outlet capacity or a defined maximum discharge can serve as an upper limit for keeping the flood protection area empty. If the flood protection area is variable in time over the year, only the discharge of the respective storage volume is increased.


* Mathematical abstraction:
* Mathematical abstraction:
:Here there is a direct relation between storage capacity and release. If the storage capacity exceeds the mark of the flood protection area, a discharge occurs. If it remains below the mark, the discharge is set to zero.
:There is a direct relation between storage capacity and release. If the storage capacity exceeds the mark of the flood protection area, a discharge occurs. If it remains below the mark, the discharge is set to zero.




==Rule type 3: Direct drinking or service water withdrawal from a reservoir==
==Rule Type 3: Direct Withdrawals from a storage for Drinking or Service Water ==


[[Datei:Theorie_Abb4.png|thumb|Figure 4: Example of a function for drinking or raw water withdrawal]]
[[Datei:Theorie_Abb4.png|thumb|Figure 4: Example of a function for drinking or raw water withdrawal]]


* Dependence:
* Dependency:
Primarily the current demand determines the withdrawal from the reservoir, although it is generally subject to temporal variations. The demand is often limited upwards by water rights or maximum withdrawal quantities, which refer to selected time horizons such as day, month, quarter, year or others. If one initially only considers the current demand, this is determined by the requirements of a water supplier and defines the demand on the storage facility. There is no reference to the content of the reservoir. However, whether the demand can actually be met depends on the current content of the reservoir. This connection is either given by the constructional structure of the withdrawal facility or for reasons of foresighted management. For example, if particularly low reservoir fillings are reached, it is advisable to throttle withdrawals in good time to avoid the reservoir running empty and thus complete failure during prolonged periods of low water <ref name="Schultz_1989">'''Schultz, G.A.''' (1989): Entwicklung von Betriebsregeln für die Wupper-Talsperre in Niedrig- und Hochwasserzeiten. Wasserwirtschaft 79 (7/8) S. 340-343</ref>. For this reason, there is usually a reserve space in every dam that is mainly used for drinking water supply, and special operating plans usually decide on its use.
:Primarily, the current demand determines the volume of withdrawals from the storage, but it is also subject to temporal variations. The upper limits for withdrawals are generally set by water rights or defined maximum withdrawal volumes, which refer to selected periods such as a day, a month, a quarter, or a year. Initially, one only considers the current demand communicated by water suppliers, which constitutes a claim towards the storage. There is no connection to the actual storage and the respective storage volume.
:Whether the demand can be pleased by withdrawing water from the storage is determined by the actual storage volumes. To connect the water demand to the actual storage volumes, the structural implementation of withdrawal elements and means of anticipatory management are taken into account. For example, if particularly low storage volumes are reached, it is advisable to throttle withdrawals in advance to avoid the storage running empty and then completely failing at covering the demand during prolonged periods of low water <ref name="Schultz_1989">'''Schultz, G.A.''' (1989): Entwicklung von Betriebsregeln für die Wupper-Talsperre in Niedrig- und Hochwasserzeiten. Wasserwirtschaft 79 (7/8) S. 340-343</ref>. Hence, there is usually space reserved in a dam specifically used for drinking water supply. Its use is handled separately in respective operating plans.


* Mathematical abstraction:
* Mathematical abstraction:
:If the demand is exactly known and unchangeable, a direct relation between withdrawal and storage content can be defined. Normally, however, the demand is subject to certain variations. For this reason it is recommended to normalize the relationship withdrawal/storage content, where the current demand serves as scaling factor. If the storage content falls below a defined limit value, only a certain percentage of the current demand is satisfied. The limit value as well as the form of the function can be variable in time.
:If the demand is exactly known and unchangeable, a direct relation between withdrawal and storage volume can be defined. However, the demand is subject to certain variations. For this reason, it is recommended to normalize the relationship between withdrawals and storage volume, where the current demand serves as a scaling factor. If the storage volume falls below a defined limit value, only a certain percentage of the current demand is satisfied. The limit value, as well as the form of the function, can be variable in time.




==Rule type 4: Rule discharge to underflow==
==Rule Type 4: Standard Discharge to Downstream Water==


[[Datei:Theorie_Abb5.png|thumb|Figure 5: Pool-based operating plan in the two-dimensional representation]]
[[Datei:Theorie_Abb5.png|thumb|Figure 5: Pool-based operating plan in a two-dimensional representation]]


* Dependence:
* Dependency:
:The control discharge into the underflow provides a discharge compensation with respect to seasonal differences of the inflow. If a minimum discharge is required, it will be included in the regular discharge. A Lamellenplan is often used to describe the regular discharge. This divides the storage capacity into different areas (pool-based operation) and assigns a discharge to each pool-based operation. When determining the pool-based operating plan, the long-term discharge and other withdrawals from the storage for other purposes play a decisive role. A reservoir should collect water in periods of high inflow but still not overflow in order to have sufficient reserves in periods of low inflow. The coupling of the releases to the storage pool-based operation is a clear function of the storage content. Since the system is supposed to react to variations in inflow during the year, the relationship between content and delivery is usually variable over time.
:The normal discharge to the downstream water should provide a discharge compensation for seasonal differences in the inflow. If a minimum discharge is required, it will be included in the normal discharge. A pool-based operating plan is used to describe the normal discharge. It divides the storage capacity into different areas and assigns a discharge to each pool-based operation. When determining the pool-based operating plan, the long-term discharge and other withdrawals from the storage for other purposes play a decisive role. A storage should collect water in periods of high inflow but still not overflow to have sufficient reserves in periods of low inflow. The coupling of the releases to the storage pool-based operation is a function of the storage volume. Since the system is supposed to react to variations of inflow during the year, the relationship between storage volume and discharge is usually variable over time.


* Mathematical abstraction:  
* Mathematical abstraction:  
:[[Datei:Theorie_Abb6.png|thumb|Figure 6: Comparison of a pool-based operating plan in the two- and three-dimensional representation]]As in the previous rules it is true that the output depends on the storage content. Usually, a pool-based operating plan is displayed in a two-dimensional diagram. The X-axis shows the time of one year, the Y-axis the storage capacity. Pool-based operations are drawn in the diagram as lines of equal outputs.
:[[Datei:Theorie_Abb6.png|thumb|Figure 6: Comparison of a pool-based operating plan in a two- and three-dimensional representation]] Like for the previous rules, the output depends on the storage volume. Usually, a pool-based operating plan is displayed in two-dimensional diagrams. The X-axis shows the time of one year, while the Y-axis shows the storage capacity. Pool-based operations are depicted as lines of equal outputs.


:[[Datei:Theorie_Abb7.png|thumb|Figure 7: Pool-based operating plan with linear interpolation between successive time reference points]]Such a view is practical but not yet complete, as can be shown below. A three-dimensional representation of a simple pool-based operating plan makes this clear. On the X-axis is the time, on the Y-axis the storage capacity is plotted, while the Z-axis shows the output directed upwards.
:[[Datei:Theorie_Abb7.png|thumb|Figure 7: Pool-based operating plan with linear interpolation between successive time reference points]]This view is practical but not yet complete: A three-dimensional representation of a simple pool-based operating plan makes this clear. On the X-axis is the time, on the Y-axis the storage capacity is plotted, while the Z-axis shows the output directed upwards.


:The 3D image viewed vertically from above again gives the two-dimensional shape. Instead of taking constant blocks for the individual time horizons, the case of a linear connection often occurs.
:The 3D image viewed from above gives the two-dimensional shape. Instead of taking constant blocks for the individual time horizons, a linear connection is also used often.


:[[Datei:Theorie_Abb8.png|thumb|Figure 8: Pool-based operating plan with two types of interpretation (selected month of May)]]For the individual time periods - here months - different functional dependencies between storage capacity and outflow are considered. If we also consider the storage contents/discharge relation for a selected point in time, there are two possibilities to connect the nodes of the discharge. On the one hand, there is the possibility of a linear interpolation, on the other hand, however, steps are also possible.
:[[Datei:Theorie_Abb8.png|thumb|Figure 8: Pool-based operating plan with two types of interpretation (selected month of May)]]For the individual periods - here months - different functional dependencies between storage capacity and outflow are considered. If the storage volume/discharge relation is also considered for a selected point in time, there are two possibilities to connect the discharge nodes. On the one hand, there is the possibility of linear interpolation, and on the other hand, a step function is possible.


:In two-dimensional space this information is not visible and must be specified separately. However, there is usually the convention to assume that the output between two nodes is constant, i.e. to interpret the slat plan as shown above in the form of stair steps.<br clear="all" />
:In two-dimensional space, this information is not visible and must be specified separately. However, there is usually the convention to assume that the output between two nodes is constant, i.e. to interpret the pool-based operating plan as shown above in the form of steps.<br clear="all" />




==Rule type 5: Compliance with defined discharges in the underflow of reservoirs (low water increase / demand coverage)==
==Rule Type 5: Maintaining Defined Discharges to Downstream Waters (Increase of Low Water / Coverage of Demand)==


[[Datei:Theorie_Abb9.png|thumb|Figure 9: Example of a function between missing quantity and scaling factor for a reservoir
[[Datei:Theorie_Abb9.png|thumb|Figure 9: Example of a function between shortfalls and scaling factors for a storage
]]
]]


* Dependence:  
* Dependency:  
:In this case the current output is determined by requests from the underflow of a reservoir. A defined discharge should not fall below a defined flow rate at a cross section of a watercourse in the water resources system, which is called control point in the following and which is influenced by reservoir discharges. The outflow at the control point is composed of the discharge from reservoirs and the lateral inflows lying in between. If the current outflow remains below the setpoint, an additional flow from above lying storage tanks is necessary. The amount of the allowance depends on the difference between the target flow and the actual flow. Whether the required allowance can be fully provided from the storage unit depends on the current storage unit content, because the lower the filling is, the less favorable it is to have to provide additional water. In this context, the low water increase/demand behaves completely identical to drinking or raw water withdrawal, only the triggering factor differs. As mentioned before, a storage-dependent function is scaled by a factor, but this factor is now derived from a comparison between set values and current discharges.
:In this case, the current discharge is determined by conditions downstream of a storage. At a cross-section of a water resources system, the so-called ''control point'', where the flow is dependent on the discharge from the upstream storage, a minimum flow is defined. The flow at the control point is composed of the discharge from upstream storages and the lateral inflows between the storages and the control point. If the current flow remains below the set minimum, an additional discharge from upstream storages is necessary. The volume of the additional discharge depends on the difference between the previously defined target flow and the actual flow. Whether the required discharge can be fully provided from the storage depends on the currently available stored volumes in the storage. The lower the level, the less favorable it is to provide additional water. In this context, the increase of low water/coverage of demand behaves completely identical to the drinking or service water withdrawal, with only the triggering factor differing. As mentioned before, a storage-dependent function is scaled by a factor, but this factor is now derived from a comparison between set values and current discharges.


* Mathematical abstraction:
* Mathematical abstraction:
The determination of the discharge to increase low water levels or to cover the demand at control points is composed of several factors. On the one hand, a shortfall in quantity varying in size results from falling below a required target discharge. How this shortfall quantity is to act as a scaling factor on a storage release can be defined by a functional relation. The shortage functions as an independent quantity, the scaling factor as a dependent quantity.
:The determination of the additionally needed discharge is composed of several factors. Firstly, a volumetrically varying shortfall of water results from failing the target discharge. The shortfall of water is then implemented as a scaling factor to the discharge which can be defined by a function. The shortfall of water functions independently, while the scaling factor functions dependently.


[[Datei:Theorie_Abb10.png|thumb|Figure 10: Example of a function for increasing low water levels or meeting demand]]
[[Datei:Theorie_Abb10.png|thumb|Figure 10: Example of a function for increasing low water levels or meeting demand]]


On the other hand, it is a question of the current reservoir filling, if and how the required allowance from the external contribution can be met. As before, a normalized memory dependent function together with the requested demand leads to a clear determination of the external contribution quantity. In the following [[:Datei:Theorie_Abb10.png||Fig. 10]] a complete coverage of the increase target or the demand can only be achieved if the storage capacity is above a critical limit of about 25% filling level.
:Secondly, it depends on the actual storage volume, if and how an additional discharge from the storage can be met. A normalized volume-dependent function and the needed discharge lead to a clear determination of the additional discharge volumes. The following [[:Datei:Theorie_Abb10.png||Fig. 10]] shows an example, where the complete provision of an increased target can only be achieved if the filling level of the storage is above a critical limit (25%).


If more than one storage facility has an influence on the relevant control point or if, in principle, more than one storage facility is to be used to meet demand, the required external contribution is to be divided among the storage facilities in accordance with a corresponding regulation. A distinction must be made between direct and indirect influence of a storage facility on the control point. A direct influence is always present when the storage release can have a direct effect on the flow condition at the control point, i.e. between storage and control point the natural flow behaviour can no longer be changed by regulating interventions. If this is not the case, an indirect influence is given.
:If more than one storage has an influence on the relevant control point or if, in principle, more than one storage facility is to be used to meet the demand, the required additional discharge is to be divided between the storages in accordance with the corresponding regulations. A distinction must be made between the direct and indirect influences of a storage on the control point. A direct influence is present if a discharge can have a direct effect on the flow conditions at the control point, i.e. the natural flow between the storage  
and the control point can no longer be changed by regulation. If this is not the case, an indirect influence is given.


:All reservoirs with a direct influence on the control point receive a missing quantity/factor and a content-dependent scalable function according to [[:Datei:Theorie_Abb10.png|Figure 10]]. Thus, depending on the missing quantity and storage capacity, the actual delivery can be determined for each storage separately.
:All storages with a direct influence on the control point receive a shortfall factor and a volume-dependent, scalable function according to [[:Datei:Theorie_Abb10.png|Figure 10]]. Thus, depending on the shortfall quantities and the storage capacity, the actual discharge can be determined separately for each storage.




==Regel Typ 6: Abgabe in Abhängigkeit des aktuellen Speicherzuflusses==
==Rule Type 6: Discharge Depending on the storage Inflow==


* Abhängigkeit: [[Datei:Theorie_Abb11.png|thumb|Abbildung 11: Direkter Einfluss zwischen Speicher und Kontrollstelle]]
* Dependency: [[Datei:Theorie_Abb11.png|thumb|Figure 11: Direct dependency between storage and control point]]
:Hier erfolgt eine direkte Kopplung zwischen Abgabe und aktuellem Zufluss zum Speicher. Ähnlich wie beim Lamellenplan handelt es sich ebenfalls um eine Anpassung an unterschiedliche Zuflusssituationen. Dies geschieht zur Verhinderung des Leer- oder Überlaufens oder um ein variables Abflussregime im Unterlauf zu erhalten. Langfristige Zuflussschwankungen sind mit dieser Betriebsregel allerdings schwer zu erfassen, da nur Momentbetrachtungen durchgeführt werden.
:There is a direct dependency between the discharge from the storage and the current inflow to the storage. Similar to the pool-based operating plan, there is also an adaptation to different inflow situations. This is done to prevent depletion or overflowing or to obtain a variable discharge regime downstream. However, long-term inflow fluctuations are difficult to detect with this operating rule, since the observations are only carried out as snapshots and not continuously.


:Zur endgültigen Bestimmung einer zuflussabhängigen Abgabe sind mehrere Komponenten zu berücksichtigen. Zuerst muss eine Beziehung zwischen aktuellem Zufluss und Abgabe vorhanden sein. Außer dem aktuellen Zufluss spielt aber auch der momentane Speicherinhalt eine wichtige Rolle, da die Beziehung Zufluss/Abgabe nicht über den gesamten Speicherinhalt hinweg uneingeschränkte Gültigkeit besitzen muss. So ist es sehr wahrscheinlich, dass bei Unterschreitung einer kritischen Speicherfüllung (z.B. eiserner Bestand) die Beziehung ganz aufgegeben wird oder zumindest die Abgabenmengen reduziert werden.
:To determine an inflow-dependent discharge, several components have to be considered. First of all, a relation between the current inflow and discharge must be defined. In addition to the current inflow, the current storage volume is important, because the relation inflow/outflow must not be valid for every filling level. Thus it is likely that the relation is ceded completely or the release quantities are adjusted if the storage level falls below a critical level.


:Weil es bei dieser Regel zum Aufeinandertreffen von relativ geringen Speicherfüllungen bei gleichzeitig hohem Zufluss – und dadurch einer geforderten hohen Abgabe - kommen kann, muss dem Grundsatz der Überprüfung physikalischer Grenzen besondere Aufmerksamkeit gewidmet werden.
:As this rule can lead to the co-occurrence of relatively small storage volumes and high inflows resulting in high discharge volumes, special attention must be paid to the basic principle of checking the physical limits.


* Mathematische Abstraktion: [[Datei:Theorie_Abb12.png|thumb|Abbildung 12: Beispiel von Funktionen zur zuflussabhängigen Abgabe]]
* Mathematical abstraction: [[Datei:Theorie_Abb12.png|thumb|Figure 12: Example of functions for inflow-dependent discharge]]
:In diesem Fall spielen drei funktionale Abhängigkeiten eine Rolle. Zum einen existiert eine direkte Funktion zwischen aktuellem Zufluss und der Abgabe. Die Form der Funktion kann beliebig sein. Es ist vorstellbar nur einzelne Bereiche des Zuflusses nachzubilden, was einer partiellen Angleichung der Abgabe an die Dauerlinie des Zuflusses entspricht.
:In this case, three functional dependencies play a part. First, there is a direct dependency between the current inflow and the discharge. The form of the function can be arbitrary. It is possible to reproduce only individual sections of the inflow, which corresponds to a partial approximation of the discharge to the duration curve of the inflow.


:Zum anderen kann die Zufluss/Abgaben Funktion durch eine Beziehung zwischen Speicherinhalt und Abgabe überlagert werden. Aus Gründen der Übersichtlichkeit empfiehlt es sich, mit einer normierten Funktion zu arbeiten. Dadurch besteht entlang des gesamten Speicherinhaltes die Möglichkeit, das Resultat aus der Zufluss/Abgaben Funktion zu beeinflussen, was insbesondere bei geringen Speicherfüllungen wünschenswert ist.
:Second, the inflow/discharge function can be superposed with the relationship between storage volume and discharge. For reasons of clarity, it is recommended to work with a normalized function. This makes it possible to influence the result of the inflow/discharge function for each storage volume, which is especially convenient for low filling levels.


:Schließlich muss die geforderte Abgabe noch hinsichtlich der Leistungskapazität der Auslassorgane überprüft werden.
:Finally, the required discharge has to be checked with regard to the outlet elements' capacity.


:[[Datei:Theorie_Abb13.png|thumb|left|Abbildung 13: Ergebnisse verschiedener zuflussabhängiger Abgabestrategien]]
:[[Datei:Theorie_Abb13.png|thumb|left|Figure 13: Results of different inflow-dependent release strategies]]


:Nachfolgend sind Beispiele aufgeführt, wie sich das Zusammenspiel verschiedener Funktionen bezüglich der Abgaben auswirkt. Die Ergebnisse sind in den folgenden Abbildungen in Form von Zufluss- und Abgabendauerlinien gegenübergestellt.
:The examples below show how the interaction of different functions affects the discharges. The results are compared in the following figures as inflow and discharge duration lines.


:Bei linearem Zusammenhang zwischen Zufluss und Abgabe und konstantem Faktor über den Speicherinhalt ist die Dauerlinie der Abgabe eine in ihrer Form dem Zufluss entsprechende aber um einen bestimmten Prozentsatz reduzierte Kurve. Bei gleich bleibender Faktor/Speicherinhalts Beziehung kann durch Variation in der Zufluss/Abgaben Beziehung die Dauerlinie gezielt verändert werden. Eine zusätzliche Modifikation des Faktors über den Speicherinhalt bringt den Vorteil, auf bestimmte Füllungszustände reagieren zu können, um einem Leer- oder Überlaufen des Speichers entgegenzuwirken.
:In the case of a linear relation between inflow and discharge and a constant factor for the storage volume, the duration line of the discharge is a curve corresponding to the inflow reduced by a certain percentage. If the storage volume factor remains constant, the duration line can be changed by varying the inflow/discharge relationship. An additional modification of the factor via the storage volume has the advantage of being able to respond to certain filling levels to prevent the storage from emptying or overflowing.


<br clear="all"/>
<br clear="all"/>


==Regel Typ 7: Beeinflussung einer Abgabe durch Systemzustände==
==Rule Type 7: Influence of Discharges Trough System States==


* Abhängigkeit:
* Dependency:
:Die Regel 7 ist eine Weiterführung und Verallgemeinerung der Niedrigwasseraufhöhung wie in Regel 5 geschildert. Auch die Regel 6 fällt unter diese Rubrik. Genauso wie ein Abflussdefizit an einem Gewässerquerschnitt oder der Speicherzufluss eine Abgabe beeinflussen kann, können auch beliebige andere Systemzustände auf die zu tätigenden Abgaben einwirken. Allgemein formuliert bedeutet dies, dass eine Abgabe aus einem Speicher aufgrund eines bestimmten Systemzustandes ausgelöst, erhöht oder reduziert wird. Grundsätzlich ist es dabei unerheblich, an welchem Ort der Systemzustand auftritt. Als Systemzustände kommen prinzipiell alle messbaren, auf Transport und Speicherung von Wasser Einfluss nehmende Größen in Frage, wie z.B. Füllungen anderer Speicher, Abgaben, Abfluss an einem Gewässerquerschnitt, eine Schneehöhe im Einzugsgebiet, aktueller Niederschlag, aktuelle Bodenfeuchte, usw..
:Rule 7, just as rule 6, is a continuation and generalization of the increase of low water as described in rules 5. Just like a discharge deficit at a cross-section or the storage inflow can influence the discharge, any other system state can. In general terms, this means that a discharge from a storage is triggered, increased, or reduced due to a certain system state. Basically, it is irrelevant where the system state occurs. All measurable variables that influence the transport and storage of water can be considered as system states, e.g. the filling of other storages, discharges, flow regime at a cross-section, a snow depth in the catchment area, current precipitation, or current soil moisture.


:Voraussetzung für die Anwendung solcher Abhängigkeiten ist die Erfassung des Systemzustandes. Praktisch bedeutet das, es muss eine Messeinrichtung zur Ermittlung der Größe vorhanden sein oder der erforderliche Wert wird über ein mathematisches Modell berechnet. Betrachtet werden ausschließlich momentane Größen.
:As a requirement to apply those dependencies a detection of the system state is necessary. Practically, this means either that a measuring device must be available to determine needed parameters or the required values are calculated using a mathematical model. Parameters are only considered as snap-shots and not continuously.


:Sollen mehrere Systemzustände Einfluss auf die Abgabe nehmen, ist eine Überlagerung der Zustandsgrößen gemäß einer entsprechenden Vorschrift notwendig.
:If several system states should influence the discharge, a superposition of the parameters according to a corresponding regulation is necessary.


* Mathematische Abstraktion:
* Mathematical abstraction:
:Mathematisch lässt sich die Beeinflussung der Abgabe durch Systemzustände immer mit einer Skalierung lösen. Dazu sind zwei Funktionen notwendig. Die erste Funktion beschreibt die Beziehung zwischen Speicherinhalt und Abgabe. Die zweite regelt die Abhängigkeit zwischen Systemzustand und einem Skalierungsfaktor. Die Verknüpfung erfolgt durch Multiplikation der Abgabe mit dem Skalierungsfaktor.
:Mathematically, the influence of system states on the discharge can always be undertaken by scaling. Two functions are necessary for this. The first function describes the relationship between storage volume and discharge. The second one controls the dependency between the system state and a scaling factor. The connection is done by multiplying the discharge with the scaling factor.


[[Datei:Theorie_Abb13.5.png|thumb|Überleitung]]
[[Datei:Theorie_Abb13.5.png|thumb|Transition]]


:Ein einfaches Beispiel ist durch eine Überleitung von Speicher A nach Speicher B gegeben.  
:A simple example is given by a transition from storage A to storage B.  


:Die maßgebende Abgabe ist die Überleitung von A nach B. Der betrachtete Systemzustand ist der Speicherinhalt von B. Es erscheint sofort einsichtig, dass eine Wasserabgabe von A nach B nur dann sinnvoll ist, wenn Speicher A genügend Reserven zur Verfügung hat und Speicher B ausreichend Aufnahmekapazität für zusätzliches Wasser besitzt. Damit ergeben sich folgende einfachen Funktionen:
:The decisive discharge is the transition from A to B. The considered system state is the storage volume of B. It seems obvious that a discharge from A to B is only useful if storage A has sufficient provision and storage B has sufficient capacity to hold additional water. This results in the following simple functions:


:[[Datei:Theorie_Abb14.png|thumb|left|Abbildung 14: Beispielfunktionen zur Verknüpfung eines Systemzustandes mit einer Abgabe]]Speicher B nimmt 100% des Zuschusses von A auf, solange seine Füllung nicht 70% des maximalen Inhaltes erreicht. Darüber hinaus ist es aus Gründen des Hochwasserschutzes unerwünscht, zusätzliches Wasser zu erhalten. Der Skalierungsfaktor fällt ab 70% Füllung bis auf Null ab. Speicher A kann ab einem Füllungsgrad über 50% Wasser an B mit steigender Tendenz überleiten. Die tatsächliche Überleitung ergibt sich aber erst im Zusammenspiel beider Funktionen unter Berücksichtigung der momentanen Speicherfüllung von B und der daraus abgeleiteten Skalierung.
:[[Datei:Theorie_Abb14.png|thumb|left|Figure 14: Example functions for linking a system state to a discharge]]storage B takes 100% of the discharge from A as long as its filling level does not reach 70% of the maximum volume. Furthermore, it is undesirable to receive additional water for flood protection reasons. The scaling factor decreases from 70% filling level to zero. Starting at a filling level above 50% it becomes increasingly easy to transfer water from Storage A to storage B. The actual transfer, however, only results from the interaction of both functions, taking into account the current filling level of storage B and the scaling derived from it.


:Für Speicher A erfolgt die Definition der Abgaben in m³/s, während die Funktion am Speicher B den einheitenlosen Skalierungsfaktor erhält. Prinzipiell ist es aber genauso denkbar, die Bedeutung der Funktionen zu tauschen und für Speicher A eine einheitenlose Funktion zur Skalierung der gewünschten Überleitungsmenge bei Speicher B einzusetzen.
:For storage A, the definition of the discharge is in m³/s, while the function for storage B receives a unitless scaling factor. In principle, however, it is possible to exchange the meaning of the functions and to use a unitless function for storage A to scale the desired transfer volume for storage B.




==Regel Typ 8: Beeinflussung einer Abgabe durch Bilanzen==
==Rule Type 8: Influencing a Discharge with Balances==


* Abhängigkeit: [[Datei:Theorie_Abb15.png|thumb|Abbildung 15 : Beispiel langjähriger Monatsmittelwerte und gleitendes 30 Tage Mittel des Speicherinhaltes]]
Dependency: [[Datei:Theorie_Abb15.png|thumb|Figure 15 : Example of long-term monthly averages and moving 30 day averages of storage volumes]]
:Diese Vorschrift ist eine Erweiterung der Regel Nr. 7. Anstatt eine aktuelle Zustandsgröße zu benutzen, wird die Bilanz eines Systemzustandes mit einer Abgabe verknüpft. Wichtig ist, dass für die Bildung der Bilanz ein eindeutiger Zeitraum vorliegt, wobei es unerheblich ist, ob die Bilanz als Summe oder als Mittelwert interpretiert wird. Über eine Funktion, die Skalierungsfaktoren in Abhängigkeit der tatsächlichen Bilanz anzeigt, lassen sich Abgaben beeinflussen.
:This rule is an extension of rule 7. Instead of using a current state parameter, the balance of a system state is linked to discharge. It is important that there are set time boundaries for carrying out the balance. However, it is irrelevant whether the balance is interpreted as a sum or as an average. A function that displays scaling factors depending on the actual balance can then be used to influence discharges.


:In der Praxis findet sich diese Form einer Abhängigkeit häufig dort wo Wasserrechte maximale Entnahmemengen je Zeiteinheit festlegen. Interessant ist die Anwendung einer Bilanz aber auch im Zusammenhang mit dem langfristigen Verhalten von Speicherfüllungen oder Zuflüssen. So könnte z.B. zur Bildung von Reserven eine Abgabe reduziert werden, wenn der Zufluss des vergangenen Winterhalbjahres unter einem definierten Erwartungswert lag. Eine weitere Anwendung ist der Vergleich zwischen langjährigen und aktuellen gleitenden Mittelwerten der Speicherfüllung. Weichen die aktuellen Werte von den langjährigen um ein bestimmtes Maß ab, kann die Abgabe zum Ausgleich verringert bzw. erhöht werden.
:In practice, this form of dependency is often found where water rights define maximum withdrawal volumes per time unit. But the application of a balance is also interesting regarding the long-term behaviour of storage filling levels or inflows. For example, a discharge could be reduced to build up provisions if the inflow of the past winter half-year was below a defined expected value. Another application is the comparison between long-term and current moving averages of storage filling levels. If the current values deviate from the long-term values by a certain amount, the discharge can be reduced or increased to compensate.


:Sind mehrere Verknüpfungen zwischen einer Abgabe und verschiedenen Bilanzen erwünscht, besteht die Möglichkeit der Überlagerung mehrerer Bilanzen (siehe Beispiel am Ende dieses Kapitels).  
:If linking a discharge to several balances is desired, it is possible to superpose several balances (see example at the end of this chapter).  


* Mathematische Abstraktion: [[Datei:Theorie_Abb16.png|thumb|Abbildung 16: Beispiel für eine Vorschrift zur Regelabgabe]]
* Mathematical abstraction: [[Datei:Theorie_Abb16.png|thumb|Figure 16: Example of a rule for standard discharge]]
:Der Einfluss der Bilanz auf die Abgabe wird mittels zweier Funktionen analog Regel 7 gebildet. Zusätzlich zur ohnehin notwendigen Speicherinhalt/Abgaben Funktion existiert eine Beziehung zwischen Bilanz und Skalierungsfaktor. Mit der Abweichung zwischen tatsächlicher Bilanz und Erwartungswert wird der Skalierungsfaktor abgegriffen.
:The influence of the balance on the discharge is posed by two functions according to rule 7. In addition to the already necessary storage volume/discharge function, there is a relation between the balance and scaling factor. The scaling factor is taken from the difference between the actual balance and the expected value.


:Anhand eines einfachen Beispiels einer Regelabgabe wird die Methode demonstriert.
:The method is demonstrated with a simple example of a standard discharge.


:Für einen Speicher A seien langjährige Monatsmittelwerte des Inhaltes und daraus abgeleitete gleitende 30 Tage Mittelwerte der Speicherfüllung sowie die Vorschrift für die Regelabgabe bekannt.
:For storage A, long-term monthly mean values of the storage volumes and derived sliding 30-day mean values of the storage filling levels, as well as the rule for the standard discharge, are known.


:Wenn beispielsweise am 1.Mai der aus den letzten 30 Tagen berechnete Mittelwert des Speicherinhaltes 5,6 Mio. betragen würde und damit gemäß [[:Datei:Theorie_Abb15.png|Abbildung 15]] gegenüber dem langjährigen Mittelwert von 8 Mio. um 30% abweicht, folgt daraus ein Skalierungsfaktor von 0,5 (siehe [[:Datei:Theorie_Abb16.png|Abbildung 16]]). Mit diesem Wert reduziert sich die Regelabgabe und liefert bei einer aktuellen Speicherfüllung von 40% nur 0,25m³/s, also 50% weniger als vorgesehen.
:If, for example, on May 1st the average value of the storage volume calculated from the last 30 days amounts to 5.6 million and thus, according to [[:Datei:Theorie_Abb15.png|Fig. 15]], it deviates by 30% from the long-term average value of 8 million m³, a scaling factor of 0.5 results (see [[:Datei:Theorie_Abb16.png|Fig. 16]]). With this value, the standard discharge is reduced and delivers only 0.25m³/s at a current storage filling level of 40%, i.e. 50% less than intended.


:[[Datei:Theorie_Abb17.png|thumb|left|Abbildung 17: Beispielfunktionen zur Verknüpfung einer Bilanz mit einer Abgabe]]Die Beziehung zwischen Bilanzabweichung und Skalierungsfaktor zeigt an, dass erst ab einer Differenz größer als 20% eine Änderung der Regelabgabe stattfindet. Bei einer Abweichung von mehr als 20% nach unten reduziert sich die Regelabgabe stufenweise. Überschreitet das tatsächliche gleitende 30-Tage-Mittel die langjährigen Werte um mehr als 20%, so wird die Regelabgabe kontinuierlich erhöht.
:[[Datei:Theorie_Abb17.png|thumb|left|Abbildung 17: Example functions to link a water balance with a discharge]]The relation between the deviation of the balance and the scaling factor indicates that only starting from a difference greater than 20% a change of the standard discharge takes place. In the case of a decrease of more than 20%, the standard discharge is reduced stepwise. If the actual moving 30-day average exceeds the long-term values by more than 20%, the standard discharge is increased continuously.


:Grundsätzlich besteht auch hier die Möglichkeit der Erweiterung durch Überlagerung und Zusammenfassung mehrerer Bilanzen.
:In general, there is also the possibility to extend the relation by superposing and combining several water balances.


:Das Zusammenspiel zwischen Bilanz und Abgabenfunktion wird nachfolgend erläutert.
:The interaction between water balance and discharge function is explained below.


<br clear="all"/>
<br clear="all"/>


==Regel Typ 9: Prioritäten bei mehreren, konkurrierenden Abgaben aus einem Speicher==
==Rule Type 9: Priorities for Competing Discharges from a Storage==


* Abhängigkeit: [[Datei:Theorie_Abb18.png|thumb|Abbildung 18: Beispiel für eine Vergabe von Prioritäten über die Lage der Funktionen]]
* Dependency: [[Datei:Theorie_Abb18.png|thumb|Figure 18: Example for assigning priorities via the position of functions]]
:Sind mehrere Abgaben aus einem Speicher zu tätigen, so kann die Situation eintreten, dass nicht alle Abgaben (Nutzungen) zu 100% erfüllt werden können. In solchen Fällen sind Prioritäten anzugeben, die eine Reihenfolge der zuerst zu befriedigenden Abgaben festlegen. Die Angabe der Prioritäten ist oftmals eine Folge politischer Entscheidungen und unterliegt keinen physikalischen Gegebenheiten.
:If there are several discharges from a storage, it can occur that it is not possible to carry out all demanded discharges. In such a case, priorities need to be specified, which determine an order in which discharges are to be satisfied. The order of priorities is often a consequence of political decisions and is not subject to physical conditions.


:Auf der anderen Seite existieren Prioritäten die sich an physikalischen Werten orientieren. Ein Beispiel in diesem Sinne ist das Abschalten einer Turbine in Zeiten des Wassermangels zugunsten einer gesicherten Wasserversorgung. In der Praxis benutzte Betriebsregeln begegnen diesem Problem häufig dadurch, dass bis zu definierten Speicherinhalten eine Nutzung erfüllt, darunter aber nicht mehr aufrechterhalten wird.
:However, there are some priorities based on physical conditions. An example is turning off a turbine in times of water shortage in favor of securing the water supply. In practice, operating rules often meet this problem by fulfilling demands up to defined storage volumes, but not maintaining discharges below the set storage volume.


:Eine andere Form, Prioritäten zu beschreiben, ist gegeben, wenn eine Abgabe A genau um den Betrag reduziert wird, der durch eine zweite Abgabe B erfolgt, wobei die Abgabe A nicht kleiner Null werden kann.
:Another way to describe priorities is to reduce a discharge A exactly by an amount, which is resulting from a second discharge B, with the discharge A never being smaller than zero.


* Praktisches Beispiel:
* Practical example:
:Anhand der praktischen Betriebsverhältnisse an der Wiehltalsperre lässt sich ein solches Beispiel zeigen. Die Wiehltalsperre dient primär der Trinkwasserversorgung und dem Hochwasserschutz, sekundär der Energieerzeugung. Zusätzlich ist im Unterlauf der Wiehltalsperre ein Mindestabfluss von 100 l/s zu gewährleisten. Die erste Priorität gehört der Trinkwasserversorgung. Zur Sicherstellung einer ausreichenden Wasserqualität im Speicherbecken werden zur Energieerzeugung genutzte zusätzliche Abgaben dann eingestellt, wenn der Speicherinhalt unter ca. 70% des Gesamtinhaltes fällt. Da sowohl die Mindestabgabe als auch die Turbinenabgabe in die Wiehl abgelassen werden, wäre es außerdem überflüssig, die Mindestabgabe aufrecht zu erhalten, wenn gleichzeitig durch die Turbine Wasser abgegeben wird. Somit ergibt sich hier ein Fall der Reduzierung einer Abgabe A (Mindestabgabe) um den Betrag der Abgabe B (Turbine) wie oben beschrieben<ref name="Aggerverband_1999">'''Aggerverband''' (1999): Hydrologische Sicherheit der Genkel- und Aggertalsperre. Gutachten des Fachgebietes Ingenieurhydrologie und Wasserbewirtschaftung, TU Darmstadt</ref>.
:The Wiehl dam gives a good example for the practical operating conditions of a dam. The Wiehl dam serves primarily as a drinking water supply and a means for flood protection, and secondarily for energy production. In addition, a minimum flow of 100 l/s has to be guaranteed downstream of the Wiehl dam. The first priority is the drinking water supply. In order to ensure sufficient water quality in the storage, additional discharges used for energy production are stopped when the storage volume falls below 70% of the total volume. As both the minimum discharge and the turbine discharge leave into the Wiehl, it would also be uncalled-for to maintain the minimum discharge if water was simultaneously discharged through the turbine. This results in a reduction of a discharge A (minimum discharge) by the amount of discharge B (turbine) as described above <ref name="Aggerverband_1999">'''Aggerverband''' (1999): Hydrologische Sicherheit der Genkel- und Aggertalsperre. Gutachten des Fachgebietes Ingenieurhydrologie und Wasserbewirtschaftung, TU Darmstadt</ref>.


* Mathematische Abstraktion: [[Datei:Theorie_Abb19.png|thumb|Abbildung 19: Beispiel einer Beziehung zwischen zwei Abgaben]]
* Mathematical abstraction: [[Datei:Theorie_Abb19.png|thumb||Figure 19: Example of a relation between two discharges]]
:Unter der Annahme, dass für jede Nutzung, wie unter den vorgenannten Regeln beschrieben, eine funktionale Abhängigkeit zwischen Speicherinhalt und Abgabe existiert, ist eine Rangfolge mehrerer Nutzungen durch die Lage der Stützstellen der Funktionen bereits gegeben. Entscheidend ist der jeweilige Speicherinhalt ab dem der Sollwert der gewünschten Abgabe nicht mehr zu 100% gedeckt wird oder sogar eine Reduzierung auf Null erfolgt.
:Assuming that for each use, following the above rules, a functional dependency between storage content and discharge exists, a ranking of several uses is already given by the position of the function's nodes.  Then, the respective storage volume from which the target discharge is no longer covered to 100% or even reduced to zero is decisive.


:Im gezeigten Beispiel ist die Rangfolge der Nutzungen eindeutig sichtbar. Zuerst wird die Turbine, danach die Niedrigwasseraufhöhung abgeschaltet bis nur noch die Abgabe für die Wasserversorgung übrig bleibt.
:In the example, the ranking of the uses is clearly visible. First, the turbine is switched off, then the increase of low water refrained from until only the discharge covering the water supply remains.


:Darüber hinaus besteht die Möglichkeit, zwei oder mehrere Abgaben direkt gegenseitig abzugleichen. Eine solche Vorschrift könnte lauten:
:In addition, it is possible to directly compare two or more discharges. Such a rule could be:


:''Wenn Abgabe B > 0 und der Speicherinhalt S < X, dann reduziere Abgabe A um den Betrag der Abgabe B, wobei Abgabe A nicht kleiner als Null werden darf.''
:''If discharge B > 0 and the storage volume S < X, then reduce discharge A by the amount of discharge B, with discharge  A not being smaller than zero.''


:Das bedeutet, dass zwischen A und B eine lineare Abhängigkeit solange existiert, bis B gleich dem Wert von A ist. Steigt B weiter an, bleibt A konstant Null.
:This means that a linear dependency exists between A and B until B is equal to the value of A. If B increases further, A remains constantly zero.




==Regel Typ 11: Wasseraufteilung==
==Rule Type 11: Water Distribution==


* Abhängigkeit:
* Dependency:
:Existiert innerhalb eines wasserwirtschaftlichen Systems die Notwendigkeit Wasser aufzuteilen, so ist eine Verteilungsvorschrift zu definieren.
:If there is the need to distribute water within a water resources system, a distribution rule must be defined.


[[Datei:Theorie_Abb19.5.png|thumb|Verzweigung]]
[[Datei:Theorie_Abb19.5.png|thumb|Diversion]]


:Es können zwei Arten von Aufteilungen auftreten:
:Two types of diversions can occur:
:# Aufteilungen, die ausschließlich hydraulischen Gesetzmäßigkeiten folgen
:# Diversion that exclusively follows hydraulic laws
:# Regelbare Aufteilungen
:# Adjustable diversions


:In beiden Fällen lassen sich Beziehungen immer als Funktion des Zuflusses definieren. Im zweiten Fall stellen diese Aufteilungsvorschriften eine Betriebsregel dar, da sie direkt das Transport- und Speicherverhalten des Wassers beeinflussen. Die Anzahl der abgehenden Abläufe ist grundsätzlich nicht eingeschränkt. Der Unterschied zu Aufteilungen an Talsperren liegt darin, dass in diesem Fall kein Speicherinhalt als Bezugsgröße Verwendung finden kann.
:In both cases, relations can always be defined as a function of the inflow. In the second case, these distribution rules represent an operating rule, since they directly influence the transport and storage behavior of water. The number of discharges is basically not limited. The difference to transitions at dams is that in this case no storage volume can be used as a reference value.


[[Datei:Theorie_Abb20.png|thumb|Abbildung 20 :Beispiel von Zuteilungsfunktionen bei mehreren Abläufen]]
[[Datei:Theorie_Abb20.png|thumb|Figure 20 :Example of assignment functions for multiple sequences]]


* Praktisches Beispiel:  
* Practical example:  
:Zur Wasserversorgung von Windhoek, der Hauptstadt Namibias, stehen die Wasserreserven dreier Dämme zur Verfügung. Die Entnahme zur Trinkwasserversorgung ist jedoch nur aus einem Damm – Von Bach Damm - möglich. Die restlichen zwei Speicher sind mit Überleitungen an den Hauptdamm angeschlossen. Die Überleitungsmenge zwischen Swakopport Damm und Von Bach Damm steht aber nicht ausschließlich für die Auffüllung des Von Bach Dammes zur Verfügung, sondern dient außerdem für die Versorgung der Stadt Karibib mit Trinkwasser.
:The water supply of Windhoek, the capital of Namibia, is provided by three dams. However, the water withdrawal for the drinking water supply is only possible from one dam - the Von Bach Dam. The remaining two storages are connected to the main dam by pipes. However, the volume transferred between Swakopport Dam and Von Bach Dam is not exclusively available for refilling the Von Bach Dam, but also serves to supply the town of Karibib with drinking water.


* Mathematische Abstraktion:  
* Mathematical abstraction:  
:[[Datei:Theorie_Abb21.png|thumb|left|Abbildung 21: Beispiel eines Schwellwertkonzeptes bei einer Aufteilung in zwei Abläufe]]Für die Definition von Aufteilungsvorschriften sind Funktionen in Abhängigkeit des aktuellen Zuflusses die geeignete Darstellung. Damit gelingt sowohl eine hydraulische als auch eine der Speicherbewirtschaftung dienende Beschreibung. Für jeden vom Verzweigungsbauwerk abgehenden Ablauf ist eine Zuteilungsfunktion anzugeben. Sollen die Funktionen variabel sein, bietet sich wiederum eine Skalierung an.
:[[Datei:Theorie_Abb21.png|thumb|left|Fig. 21: Example of a threshold concept for a division into two flows]]For the definition of division rules, functions depending on the current inflow are an appropriate representation. Thus, both a hydraulic description and a description serving the management of the storage are possible. For each discharge leaving the diversion structure, a distribution function has to be specified. If the functions are to be variable, scaling is recommended.


[[Datei:Theorie_Abb22.png|thumb|Abbildung 22: Beispiel eines Schwellwertkonzeptes bei einer Aufteilung zur Bedienung mehrerer Nutzer
[[Datei:Theorie_Abb22.png|thumb|Figure 22: Example of a threshold concept with a distribution to serve several users
]]
]]


:Sind die Zuteilungsfunktionen nicht a priori definierbar, sondern ergeben sich die abzuleitenden Mengen erst später durch Bedarfsberechnungen, so bietet sich ein Schwellwertkonzept an, welches wiederum mit Skalierungsfaktoren arbeiten kann. Der Schwellwert wird über einen Faktor skaliert und ist dadurch variabel. Solange der Zufluss geringer als der Schwellwert ist, wird der gesamte Zufluss zur Befriedigung des Bedarfs benutzt. Erst wenn der aktuelle Zufluss den Schwellwert übersteigt, kommt es zum Abschlag der restlichen Menge.
:If the distribution functions cannot be pre-defined, but the discharge volumes rather result later from demand calculations, then a threshold concept is suitable, which in turn can work with scaling factors. The threshold is scaled by a factor and is therefore variable. As long as the inflow is lower than the threshold, the entire inflow is used to satisfy the demand. Only when the current inflow exceeds the threshold, the remaining amount is discharged.


:Ist eine Aufteilung in mehr als zwei Abläufe notwendig, kann das Schwellwertkonzept mehrfach nacheinander angewandt werden. Die Reihenfolge entscheidet über die Prioritäten der Wasserzuteilung.
:If a division into more than two discharges is necessary, the threshold concept can be successively applied several times. The order of the discharges determines the priorities of the water distribution.




==Literaturangaben==
==Literature==


<references/>
<references/>

Aktuelle Version vom 30. August 2021, 12:47 Uhr

Sprachen:

The operating plan of a dam or a storage network is part of the official approval of plans and usually is available as a report or presentation. Its complexity can vary: it ranges from simply defining flood protection areas and setting a report and alarm plan to notify the supervisory authorities in exceptional situations to complex sets of rules concerning functional dependencies that derive discharges from varying system states.

As follows, principles to clarify the variety of possible regulations and reduce them to essential dependencies are presented. A concept is derived to represent most operating rules by a few basic calculation rules. The given selection does not claim to be complete, but it is likely to contain the rules applied in practice.


Basic Principle: Verification of Physical Limits

Figure 1: Dependency on storage capacity

When specifying discharges according to an operating rule, it is assumed that the outlet capacity is sufficient to meet these discharges. Thus, dimensioning the outlet element must consider the operating requirements. In principle, the physically possible discharge, given by the outlet's characteristic curve at full opening, sets the upper limit value.

If the pressure level or the outlet capacity is sufficient to discharge the desired quantity when fully opened, the discharge can be throttled to the intended level by closing a slide. If the pressure level is insufficient, only the hydraulically possible discharge can be discharged.

  • Mathematical abstraction:
All outlets obeying an operating rule are functions of the storage's volume and cannot exceed the outlets' maximum capacity when fully opened. As soon as the capacity of the outlets exceeds the required discharge, it can be adjusted by partially closing the control elements.

All discharge types from storages mentioned below are subject to this restriction.


Rule Type 1: Definition of a Minimum Output or a Safely Dischargeable Maximum Output

Figure 2: Example for minimum and maximum discharge as a function of storage capacity
  • Dependency:
The specification of a minimum or maximum discharge is based on requirements downstream of a storage. The maximal discharge is based on the discharge respective to a critical, downstream cross-section. Consequently, a hydraulic method exists for its determination. In contrast, there is no clear guideline for the minimum discharge. Often, ratios of MNQ or MQ are used. Independent of determining the minimum or maximum discharge, the basic principle to verify outlet elements' physical limits is applied. So, minimum and maximum discharge can only be discharged if the outlet capacity is sufficient at the given pressure level. Since, in reality, it is unlikely that the dimensioning of the outlet elements and the required discharge are conflicting, the reference to the dependence on the storage capacity content is rather theoretical but necessary to derive general laws.
  • Mathematical abstraction:
Minimum and maximum discharge are functions of the storage volume and follow the characteristic curve of fully opened outlets at a low filling level. As soon as the outlet elements' capacity is sufficient for the required discharge volume, the discharge can be kept constant by partially closing the control elements.


Rule Type 2: Maintaining a Flood Protection Area, Possibly Timely Variable Over the Year

Figure 3: Example of a function to maintain a flood protection area
  • Dependency:
The definition of a flood protection area as a minimum requirement only includes the designation of a volume, which has to be kept free for potential floodwater. The dimensioning is based on flood events with certain recurrence intervals. If the water level exceeds the mark of the protection area, an increased discharge to the downstream water of the storage ensures that the area is kept empty. Thus, this rule is reduced to a relation between discharge and storage volume, where the outlet capacity or a defined maximum discharge can serve as an upper limit for keeping the flood protection area empty. If the flood protection area is variable in time over the year, only the discharge of the respective storage volume is increased.
  • Mathematical abstraction:
There is a direct relation between storage capacity and release. If the storage capacity exceeds the mark of the flood protection area, a discharge occurs. If it remains below the mark, the discharge is set to zero.


Rule Type 3: Direct Withdrawals from a storage for Drinking or Service Water

Figure 4: Example of a function for drinking or raw water withdrawal
  • Dependency:
Primarily, the current demand determines the volume of withdrawals from the storage, but it is also subject to temporal variations. The upper limits for withdrawals are generally set by water rights or defined maximum withdrawal volumes, which refer to selected periods such as a day, a month, a quarter, or a year. Initially, one only considers the current demand communicated by water suppliers, which constitutes a claim towards the storage. There is no connection to the actual storage and the respective storage volume.
Whether the demand can be pleased by withdrawing water from the storage is determined by the actual storage volumes. To connect the water demand to the actual storage volumes, the structural implementation of withdrawal elements and means of anticipatory management are taken into account. For example, if particularly low storage volumes are reached, it is advisable to throttle withdrawals in advance to avoid the storage running empty and then completely failing at covering the demand during prolonged periods of low water [1]. Hence, there is usually space reserved in a dam specifically used for drinking water supply. Its use is handled separately in respective operating plans.
  • Mathematical abstraction:
If the demand is exactly known and unchangeable, a direct relation between withdrawal and storage volume can be defined. However, the demand is subject to certain variations. For this reason, it is recommended to normalize the relationship between withdrawals and storage volume, where the current demand serves as a scaling factor. If the storage volume falls below a defined limit value, only a certain percentage of the current demand is satisfied. The limit value, as well as the form of the function, can be variable in time.


Rule Type 4: Standard Discharge to Downstream Water

Figure 5: Pool-based operating plan in a two-dimensional representation
  • Dependency:
The normal discharge to the downstream water should provide a discharge compensation for seasonal differences in the inflow. If a minimum discharge is required, it will be included in the normal discharge. A pool-based operating plan is used to describe the normal discharge. It divides the storage capacity into different areas and assigns a discharge to each pool-based operation. When determining the pool-based operating plan, the long-term discharge and other withdrawals from the storage for other purposes play a decisive role. A storage should collect water in periods of high inflow but still not overflow to have sufficient reserves in periods of low inflow. The coupling of the releases to the storage pool-based operation is a function of the storage volume. Since the system is supposed to react to variations of inflow during the year, the relationship between storage volume and discharge is usually variable over time.
  • Mathematical abstraction:
Figure 6: Comparison of a pool-based operating plan in a two- and three-dimensional representation
Like for the previous rules, the output depends on the storage volume. Usually, a pool-based operating plan is displayed in two-dimensional diagrams. The X-axis shows the time of one year, while the Y-axis shows the storage capacity. Pool-based operations are depicted as lines of equal outputs.
Figure 7: Pool-based operating plan with linear interpolation between successive time reference points
This view is practical but not yet complete: A three-dimensional representation of a simple pool-based operating plan makes this clear. On the X-axis is the time, on the Y-axis the storage capacity is plotted, while the Z-axis shows the output directed upwards.
The 3D image viewed from above gives the two-dimensional shape. Instead of taking constant blocks for the individual time horizons, a linear connection is also used often.
Figure 8: Pool-based operating plan with two types of interpretation (selected month of May)
For the individual periods - here months - different functional dependencies between storage capacity and outflow are considered. If the storage volume/discharge relation is also considered for a selected point in time, there are two possibilities to connect the discharge nodes. On the one hand, there is the possibility of linear interpolation, and on the other hand, a step function is possible.
In two-dimensional space, this information is not visible and must be specified separately. However, there is usually the convention to assume that the output between two nodes is constant, i.e. to interpret the pool-based operating plan as shown above in the form of steps.


Rule Type 5: Maintaining Defined Discharges to Downstream Waters (Increase of Low Water / Coverage of Demand)

Figure 9: Example of a function between shortfalls and scaling factors for a storage
  • Dependency:
In this case, the current discharge is determined by conditions downstream of a storage. At a cross-section of a water resources system, the so-called control point, where the flow is dependent on the discharge from the upstream storage, a minimum flow is defined. The flow at the control point is composed of the discharge from upstream storages and the lateral inflows between the storages and the control point. If the current flow remains below the set minimum, an additional discharge from upstream storages is necessary. The volume of the additional discharge depends on the difference between the previously defined target flow and the actual flow. Whether the required discharge can be fully provided from the storage depends on the currently available stored volumes in the storage. The lower the level, the less favorable it is to provide additional water. In this context, the increase of low water/coverage of demand behaves completely identical to the drinking or service water withdrawal, with only the triggering factor differing. As mentioned before, a storage-dependent function is scaled by a factor, but this factor is now derived from a comparison between set values and current discharges.
  • Mathematical abstraction:
The determination of the additionally needed discharge is composed of several factors. Firstly, a volumetrically varying shortfall of water results from failing the target discharge. The shortfall of water is then implemented as a scaling factor to the discharge which can be defined by a function. The shortfall of water functions independently, while the scaling factor functions dependently.
Figure 10: Example of a function for increasing low water levels or meeting demand
Secondly, it depends on the actual storage volume, if and how an additional discharge from the storage can be met. A normalized volume-dependent function and the needed discharge lead to a clear determination of the additional discharge volumes. The following |Fig. 10 shows an example, where the complete provision of an increased target can only be achieved if the filling level of the storage is above a critical limit (25%).
If more than one storage has an influence on the relevant control point or if, in principle, more than one storage facility is to be used to meet the demand, the required additional discharge is to be divided between the storages in accordance with the corresponding regulations. A distinction must be made between the direct and indirect influences of a storage on the control point. A direct influence is present if a discharge can have a direct effect on the flow conditions at the control point, i.e. the natural flow between the storage

and the control point can no longer be changed by regulation. If this is not the case, an indirect influence is given.

All storages with a direct influence on the control point receive a shortfall factor and a volume-dependent, scalable function according to Figure 10. Thus, depending on the shortfall quantities and the storage capacity, the actual discharge can be determined separately for each storage.


Rule Type 6: Discharge Depending on the storage Inflow

  • Dependency:
    Figure 11: Direct dependency between storage and control point
There is a direct dependency between the discharge from the storage and the current inflow to the storage. Similar to the pool-based operating plan, there is also an adaptation to different inflow situations. This is done to prevent depletion or overflowing or to obtain a variable discharge regime downstream. However, long-term inflow fluctuations are difficult to detect with this operating rule, since the observations are only carried out as snapshots and not continuously.
To determine an inflow-dependent discharge, several components have to be considered. First of all, a relation between the current inflow and discharge must be defined. In addition to the current inflow, the current storage volume is important, because the relation inflow/outflow must not be valid for every filling level. Thus it is likely that the relation is ceded completely or the release quantities are adjusted if the storage level falls below a critical level.
As this rule can lead to the co-occurrence of relatively small storage volumes and high inflows resulting in high discharge volumes, special attention must be paid to the basic principle of checking the physical limits.
  • Mathematical abstraction:
    Figure 12: Example of functions for inflow-dependent discharge
In this case, three functional dependencies play a part. First, there is a direct dependency between the current inflow and the discharge. The form of the function can be arbitrary. It is possible to reproduce only individual sections of the inflow, which corresponds to a partial approximation of the discharge to the duration curve of the inflow.
Second, the inflow/discharge function can be superposed with the relationship between storage volume and discharge. For reasons of clarity, it is recommended to work with a normalized function. This makes it possible to influence the result of the inflow/discharge function for each storage volume, which is especially convenient for low filling levels.
Finally, the required discharge has to be checked with regard to the outlet elements' capacity.
Figure 13: Results of different inflow-dependent release strategies
The examples below show how the interaction of different functions affects the discharges. The results are compared in the following figures as inflow and discharge duration lines.
In the case of a linear relation between inflow and discharge and a constant factor for the storage volume, the duration line of the discharge is a curve corresponding to the inflow reduced by a certain percentage. If the storage volume factor remains constant, the duration line can be changed by varying the inflow/discharge relationship. An additional modification of the factor via the storage volume has the advantage of being able to respond to certain filling levels to prevent the storage from emptying or overflowing.


Rule Type 7: Influence of Discharges Trough System States

  • Dependency:
Rule 7, just as rule 6, is a continuation and generalization of the increase of low water as described in rules 5. Just like a discharge deficit at a cross-section or the storage inflow can influence the discharge, any other system state can. In general terms, this means that a discharge from a storage is triggered, increased, or reduced due to a certain system state. Basically, it is irrelevant where the system state occurs. All measurable variables that influence the transport and storage of water can be considered as system states, e.g. the filling of other storages, discharges, flow regime at a cross-section, a snow depth in the catchment area, current precipitation, or current soil moisture.
As a requirement to apply those dependencies a detection of the system state is necessary. Practically, this means either that a measuring device must be available to determine needed parameters or the required values are calculated using a mathematical model. Parameters are only considered as snap-shots and not continuously.
If several system states should influence the discharge, a superposition of the parameters according to a corresponding regulation is necessary.
  • Mathematical abstraction:
Mathematically, the influence of system states on the discharge can always be undertaken by scaling. Two functions are necessary for this. The first function describes the relationship between storage volume and discharge. The second one controls the dependency between the system state and a scaling factor. The connection is done by multiplying the discharge with the scaling factor.
Transition
A simple example is given by a transition from storage A to storage B.
The decisive discharge is the transition from A to B. The considered system state is the storage volume of B. It seems obvious that a discharge from A to B is only useful if storage A has sufficient provision and storage B has sufficient capacity to hold additional water. This results in the following simple functions:
Figure 14: Example functions for linking a system state to a discharge
storage B takes 100% of the discharge from A as long as its filling level does not reach 70% of the maximum volume. Furthermore, it is undesirable to receive additional water for flood protection reasons. The scaling factor decreases from 70% filling level to zero. Starting at a filling level above 50% it becomes increasingly easy to transfer water from Storage A to storage B. The actual transfer, however, only results from the interaction of both functions, taking into account the current filling level of storage B and the scaling derived from it.
For storage A, the definition of the discharge is in m³/s, while the function for storage B receives a unitless scaling factor. In principle, however, it is possible to exchange the meaning of the functions and to use a unitless function for storage A to scale the desired transfer volume for storage B.


Rule Type 8: Influencing a Discharge with Balances

Dependency:

Figure 15 : Example of long-term monthly averages and moving 30 day averages of storage volumes
This rule is an extension of rule 7. Instead of using a current state parameter, the balance of a system state is linked to discharge. It is important that there are set time boundaries for carrying out the balance. However, it is irrelevant whether the balance is interpreted as a sum or as an average. A function that displays scaling factors depending on the actual balance can then be used to influence discharges.
In practice, this form of dependency is often found where water rights define maximum withdrawal volumes per time unit. But the application of a balance is also interesting regarding the long-term behaviour of storage filling levels or inflows. For example, a discharge could be reduced to build up provisions if the inflow of the past winter half-year was below a defined expected value. Another application is the comparison between long-term and current moving averages of storage filling levels. If the current values deviate from the long-term values by a certain amount, the discharge can be reduced or increased to compensate.
If linking a discharge to several balances is desired, it is possible to superpose several balances (see example at the end of this chapter).
  • Mathematical abstraction:
    Figure 16: Example of a rule for standard discharge
The influence of the balance on the discharge is posed by two functions according to rule 7. In addition to the already necessary storage volume/discharge function, there is a relation between the balance and scaling factor. The scaling factor is taken from the difference between the actual balance and the expected value.
The method is demonstrated with a simple example of a standard discharge.
For storage A, long-term monthly mean values of the storage volumes and derived sliding 30-day mean values of the storage filling levels, as well as the rule for the standard discharge, are known.
If, for example, on May 1st the average value of the storage volume calculated from the last 30 days amounts to 5.6 million m³ and thus, according to Fig. 15, it deviates by 30% from the long-term average value of 8 million m³, a scaling factor of 0.5 results (see Fig. 16). With this value, the standard discharge is reduced and delivers only 0.25m³/s at a current storage filling level of 40%, i.e. 50% less than intended.
Abbildung 17: Example functions to link a water balance with a discharge
The relation between the deviation of the balance and the scaling factor indicates that only starting from a difference greater than 20% a change of the standard discharge takes place. In the case of a decrease of more than 20%, the standard discharge is reduced stepwise. If the actual moving 30-day average exceeds the long-term values by more than 20%, the standard discharge is increased continuously.
In general, there is also the possibility to extend the relation by superposing and combining several water balances.
The interaction between water balance and discharge function is explained below.


Rule Type 9: Priorities for Competing Discharges from a Storage

  • Dependency:
    Figure 18: Example for assigning priorities via the position of functions
If there are several discharges from a storage, it can occur that it is not possible to carry out all demanded discharges. In such a case, priorities need to be specified, which determine an order in which discharges are to be satisfied. The order of priorities is often a consequence of political decisions and is not subject to physical conditions.
However, there are some priorities based on physical conditions. An example is turning off a turbine in times of water shortage in favor of securing the water supply. In practice, operating rules often meet this problem by fulfilling demands up to defined storage volumes, but not maintaining discharges below the set storage volume.
Another way to describe priorities is to reduce a discharge A exactly by an amount, which is resulting from a second discharge B, with the discharge A never being smaller than zero.
  • Practical example:
The Wiehl dam gives a good example for the practical operating conditions of a dam. The Wiehl dam serves primarily as a drinking water supply and a means for flood protection, and secondarily for energy production. In addition, a minimum flow of 100 l/s has to be guaranteed downstream of the Wiehl dam. The first priority is the drinking water supply. In order to ensure sufficient water quality in the storage, additional discharges used for energy production are stopped when the storage volume falls below 70% of the total volume. As both the minimum discharge and the turbine discharge leave into the Wiehl, it would also be uncalled-for to maintain the minimum discharge if water was simultaneously discharged through the turbine. This results in a reduction of a discharge A (minimum discharge) by the amount of discharge B (turbine) as described above [2].
  • Mathematical abstraction:
    Figure 19: Example of a relation between two discharges
Assuming that for each use, following the above rules, a functional dependency between storage content and discharge exists, a ranking of several uses is already given by the position of the function's nodes. Then, the respective storage volume from which the target discharge is no longer covered to 100% or even reduced to zero is decisive.
In the example, the ranking of the uses is clearly visible. First, the turbine is switched off, then the increase of low water refrained from until only the discharge covering the water supply remains.
In addition, it is possible to directly compare two or more discharges. Such a rule could be:
If discharge B > 0 and the storage volume S < X, then reduce discharge A by the amount of discharge B, with discharge A not being smaller than zero.
This means that a linear dependency exists between A and B until B is equal to the value of A. If B increases further, A remains constantly zero.


Rule Type 11: Water Distribution

  • Dependency:
If there is the need to distribute water within a water resources system, a distribution rule must be defined.
Diversion
Two types of diversions can occur:
  1. Diversion that exclusively follows hydraulic laws
  2. Adjustable diversions
In both cases, relations can always be defined as a function of the inflow. In the second case, these distribution rules represent an operating rule, since they directly influence the transport and storage behavior of water. The number of discharges is basically not limited. The difference to transitions at dams is that in this case no storage volume can be used as a reference value.
Figure 20 :Example of assignment functions for multiple sequences
  • Practical example:
The water supply of Windhoek, the capital of Namibia, is provided by three dams. However, the water withdrawal for the drinking water supply is only possible from one dam - the Von Bach Dam. The remaining two storages are connected to the main dam by pipes. However, the volume transferred between Swakopport Dam and Von Bach Dam is not exclusively available for refilling the Von Bach Dam, but also serves to supply the town of Karibib with drinking water.
  • Mathematical abstraction:
Fig. 21: Example of a threshold concept for a division into two flows
For the definition of division rules, functions depending on the current inflow are an appropriate representation. Thus, both a hydraulic description and a description serving the management of the storage are possible. For each discharge leaving the diversion structure, a distribution function has to be specified. If the functions are to be variable, scaling is recommended.
Figure 22: Example of a threshold concept with a distribution to serve several users
If the distribution functions cannot be pre-defined, but the discharge volumes rather result later from demand calculations, then a threshold concept is suitable, which in turn can work with scaling factors. The threshold is scaled by a factor and is therefore variable. As long as the inflow is lower than the threshold, the entire inflow is used to satisfy the demand. Only when the current inflow exceeds the threshold, the remaining amount is discharged.
If a division into more than two discharges is necessary, the threshold concept can be successively applied several times. The order of the discharges determines the priorities of the water distribution.


Literature

  1. Schultz, G.A. (1989): Entwicklung von Betriebsregeln für die Wupper-Talsperre in Niedrig- und Hochwasserzeiten. Wasserwirtschaft 79 (7/8) S. 340-343
  2. Aggerverband (1999): Hydrologische Sicherheit der Genkel- und Aggertalsperre. Gutachten des Fachgebietes Ingenieurhydrologie und Wasserbewirtschaftung, TU Darmstadt