Translations:Begriffsdefinitionen/3/en: Unterschied zwischen den Versionen

Aus TALSIM Docs
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Under the term water resources system all water-related transport and storage processes within a delimited area are summarized, whereas it is irrelevant if the system actually exists, or represents a future or possible planning state. The water-related processes are summarized in individual components or elements.The simulation of such a system requires the transformation of the actual running processes (reality) into mathematical equations for the calculation of the hydrological and hydraulic processes. In other words, it is the abstraction and mapping of the spatial and temporal distribution of water.
The term water resources system summarizes all water-related transport and storage processes within a limited area, whereas it is irrelevant if it is a real-world system, or it represents a potential future or a planning state. The water-related processes are integrated as individual components or elements. The simulation of water resources systems requires an abstract representation of the real-world processes as mathematical equations to carry out the calculation of hydrological and hydraulic processes. In other words, the system should perform the abstraction and mapping of the spatial and temporal distribution of water.
For the complete coverage of a water resources system, the definition of the boundaries is necessary. These boundaries are, on the one hand, of a purely spatial nature due to catchment area boundaries. On the other hand, a distinction between system load and system results. The system loads - water supply and water demand - affect the system from the outside and trigger processes in the system, i.e. they do not directly belong to the system itself. It is assumed that there is no feedback between system and system load. However, this assumption becomes less and less valid the more the water management system interferes with the water balance.Consequently, a system is the sum of components or elements which in turn mathematically represent the water-related processes. The representation of the flow relationships between the elements is also part of a water resources system. Depending on the respective objective, different spatial resolutions can be achieved. A consideration of all processes taking place in water management systems is neither meaningful nor possible. The principle is to record all relevant processes and to represent them as accurately as necessary. This requires the abstraction and combination of different transport and storage processes. This integration of several processes results in a representation of reality by means of individual calculation units. These units will be called system elements in the following. A system element always delivers the same results under the same conditions. A classification of the elements is done later.The size and structure of a system element is determined by geography, by water management processes or by both factors together. For example, a dam - storage basin - is delimited by the storage space and the structure itself, because all processes taking place in it influence each other. For this reason, operating facilities such as spillways, bottom and operating drains are part of the system element of a dam. Geography and water ressources processes are thus responsible for the design of the system element dam.
To completely determine a water resources system, the definition of system boundaries is necessary. These boundaries are, on one hand, of a purely spatial nature due to catchment area boundaries, but on the other hand, they are also a distinction between system load and system results. The system loads - water supply and water demand - affect the system from the outside and trigger processes within the system, i.e. they do not directly belong to the system itself. It is assumed that there is no feedback between the system and system load. However, this assumption becomes less and less valid the more a water management system interferes with the water balance. Consequently, a system is the sum of components or elements which in turn mathematically represent the water-related processes. The representation of the flow relationships between the elements is also part of a water resources system. Depending on the respective objective, different spatial resolutions can be achieved. A consideration of all the processes, taking place in water management systems, is neither meaningful nor possible. Generally, it is advised to record all relevant processes and to represent them as accurately as necessary. Sometimes, this requires the abstraction and combination of different transport and storage processes. Integrating several processes into the system as one combined element results in a representation of reality by means of individual calculation units. These units will be called system elements in the following. A system element always delivers the same results under the same conditions. System elements undergo a classification, which will be explained later on. The size and structure of a system element are determined by geography, by water management processes, or by both. For example, a ''reservoir'' is delimited by its storage space and the structure itself, with all comprised processes influencing each other. For this reason, operating facilities such as spillways, bottom discharge, and operating discharge are part of the system element ''reservoir''. Geography and water resource processes are thus responsible for the design of the system element ''reservoir''.

Version vom 17. März 2021, 16:57 Uhr

Information zur Nachricht (bearbeiten)
Zu dieser Nachricht ist keine Dokumentation vorhanden. Sofern du weißt, wo und in welchem Zusammenhang sie genutzt wird, kannst du anderen Übersetzern bei ihrer Arbeit helfen, indem du eine Dokumentation hinzufügst.
Nachricht im Original (Begriffsdefinitionen)
Unter der Bezeichnung wasserwirtschaftliches System werden alle wasserbezogenen Transport- und Speicherprozesse innerhalb eines abgegrenzten Gebietes zusammengefasst, wobei es unerheblich ist, ob das System tatsächlich existiert oder einen zukünftigen bzw. denkbaren Planungszustand darstellt. Die wasserbezogenen Prozesse werden in einzelnen Komponenten bzw. Elementen zusammengefasst.
Die Simulation eines solchen Systems verlangt die Umsetzung der tatsächlich ablaufenden Prozesse (Realität) in mathematische Gleichungen zur Berechnung der hydrologischen und hydraulischen Vorgänge. Mit anderen Worten handelt es sich um die Abstraktion und Abbildung der räumlichen und zeitlichen Verteilung von Wasser. 
Für die vollständige Erfassung eines wasserwirtschaftlichen Systems ist die Definition der Grenzen notwendig. Diese sind zum einen durch Einzugsgebietsgrenzen rein räumlicher Natur. Zum anderen ergibt sich eine Unterscheidung zwischen Systembelastung und System. Die Systembelastungen – Wasserdargebot und Wasserbedarf - wirken auf das System von außen ein und lösen im System Vorgänge aus, gehören also nicht unmittelbar zum System selbst. Dabei gilt die Annahme, dass zwischen System und Systembelastung keine Rückkopplung stattfindet. Diese Annahme verliert jedoch in zunehmendem Maße an Gültigkeit, je stärker die Eingriffe in den Wasserhaushalt durch das wasserwirtschaftliche System sind. 
Ein System ist folglich die Summe von Komponenten bzw. Elementen, die ihrerseits die wasserbezogenen Prozesse mathematisch abbilden. Die Darstellung der Fließbeziehungen der Elemente untereinander ist ebenfalls Bestandteil eines wasserwirtschaftlichen Systems. 
In Abhängigkeit der jeweiligen Zielsetzung ergeben sich unterschiedliche räumliche Auflösungen. 
Eine Betrachtung aller ablaufenden Vorgänge in wasserwirtschaftlichen Systemen ist weder sinnvoll noch möglich. Es gilt der Grundsatz, alle maßgebenden Prozesse zu erfassen und so genau wie nötig darzustellen. Dadurch wird die Abstraktion und Zusammenfassung verschiedener Transport- und Speicherprozesse erforderlich. Durch diese Integration mehrerer Prozesse entsteht eine Abbildung der Realität mittels einzelner Berechnungseinheiten. Diese Einheiten werden im weiteren Verlauf als Systemelemente bezeichnet. Ein Systemelement liefert unter gleichen Voraussetzungen immer gleiche Ergebnisse. Eine Klassifizierung der Elemente erfolgt später.
Die Größe und Struktur eines Systemelementes ist durch die Geographie, durch wasserwirtschaftliche Prozesse oder durch beide Faktoren gemeinsam bestimmt. Eine Talsperre – Speicherbecken - wird beispielsweise durch den Speicherraum und das Bauwerk selbst eingegrenzt, weil sich alle darin abspielenden Vorgänge gegenseitig beeinflussen. Deshalb gehören Betriebseinrichtungen wie Hochwasserentlastung, Grund- und Betriebsablass zum Systemelement Talsperre. Somit sind Geographie und wasserwirtschaftliche Prozesse für die Gestalt des Systemelementes Talsperre verantwortlich.

The term water resources system summarizes all water-related transport and storage processes within a limited area, whereas it is irrelevant if it is a real-world system, or it represents a potential future or a planning state. The water-related processes are integrated as individual components or elements. The simulation of water resources systems requires an abstract representation of the real-world processes as mathematical equations to carry out the calculation of hydrological and hydraulic processes. In other words, the system should perform the abstraction and mapping of the spatial and temporal distribution of water. To completely determine a water resources system, the definition of system boundaries is necessary. These boundaries are, on one hand, of a purely spatial nature due to catchment area boundaries, but on the other hand, they are also a distinction between system load and system results. The system loads - water supply and water demand - affect the system from the outside and trigger processes within the system, i.e. they do not directly belong to the system itself. It is assumed that there is no feedback between the system and system load. However, this assumption becomes less and less valid the more a water management system interferes with the water balance. Consequently, a system is the sum of components or elements which in turn mathematically represent the water-related processes. The representation of the flow relationships between the elements is also part of a water resources system. Depending on the respective objective, different spatial resolutions can be achieved. A consideration of all the processes, taking place in water management systems, is neither meaningful nor possible. Generally, it is advised to record all relevant processes and to represent them as accurately as necessary. Sometimes, this requires the abstraction and combination of different transport and storage processes. Integrating several processes into the system as one combined element results in a representation of reality by means of individual calculation units. These units will be called system elements in the following. A system element always delivers the same results under the same conditions. System elements undergo a classification, which will be explained later on. The size and structure of a system element are determined by geography, by water management processes, or by both. For example, a reservoir is delimited by its storage space and the structure itself, with all comprised processes influencing each other. For this reason, operating facilities such as spillways, bottom discharge, and operating discharge are part of the system element reservoir. Geography and water resource processes are thus responsible for the design of the system element reservoir.